Questões de Concurso
Filtrar
1.410 Questões de concurso encontradas
Página 164 de 282
Questões por página:
Questões por página:
Concurso:
Prefeitura de Teutônia - RS
Disciplina:
Matemática
Junto a uma parede, com altura de 10 metros, pretende-se completar uma cerca retangular com 80 metros de perímetro. Assinale qual a área máxima possível.
Concurso:
Prefeitura de Delmiro Gouveia - AL
Disciplina:
Matemática
mostrar texto associado
Leia o texto 'Teorema de Pitágoras' e, em seguida, analise as afirmativas abaixo:
I. De acordo com o texto, na geometria euclidiana, o teorema de Pitágoras afirma que, em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.
II. O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo isósceles, de acordo com o texto.
III. O 6º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas, de acordo com o texto, é verificar que a área da região formada quando os quatro triângulos retângulos são retirados é igual a c², de acordo com o texto.
Marque a alternativa CORRETA:
I. De acordo com o texto, na geometria euclidiana, o teorema de Pitágoras afirma que, em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.
II. O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo isósceles, de acordo com o texto.
III. O 6º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas, de acordo com o texto, é verificar que a área da região formada quando os quatro triângulos retângulos são retirados é igual a c², de acordo com o texto.
Marque a alternativa CORRETA:
Concurso:
Prefeitura de Delmiro Gouveia - AL
Disciplina:
Matemática
mostrar texto associado
Leia o texto 'Teorema de Pitágoras' e, em seguida, analise as afirmativas abaixo:
I. No texto, o 2º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas exige que o quadrado seja subdividido em quatro retângulos, sendo dois deles quadrados de lados, respectivamente, “a” e “b”. Assim, deve-se traçar dois segmentos de reta paralelos a dois lados consecutivos do quadrado, sendo cada um deles interno ao quadrado e com o mesmo comprimento que o lado do quadrado, de acordo com o texto.
II. O 3º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas, de acordo com o texto, é dividir cada um dos dois retângulos em dois triângulos retângulos, traçando-se as diagonais. Nesse caso, chama-se “c” o comprimento de cada diagonal.
III. O 1º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas é desenhar um cubo de lado b + a, de acordo com o texto.
Marque a alternativa CORRETA:
I. No texto, o 2º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas exige que o quadrado seja subdividido em quatro retângulos, sendo dois deles quadrados de lados, respectivamente, “a” e “b”. Assim, deve-se traçar dois segmentos de reta paralelos a dois lados consecutivos do quadrado, sendo cada um deles interno ao quadrado e com o mesmo comprimento que o lado do quadrado, de acordo com o texto.
II. O 3º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas, de acordo com o texto, é dividir cada um dos dois retângulos em dois triângulos retângulos, traçando-se as diagonais. Nesse caso, chama-se “c” o comprimento de cada diagonal.
III. O 1º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas é desenhar um cubo de lado b + a, de acordo com o texto.
Marque a alternativa CORRETA:
Concurso:
Prefeitura de Delmiro Gouveia - AL
Disciplina:
Matemática
mostrar texto associado
Leia o texto 'Teorema de Pitágoras' e, em seguida, analise as afirmativas abaixo:
I. Segundo o texto, o 4º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas é verificar que a área da região que resta, ao retirar-se os quatro triângulos retângulos, é igual a b² – a².
II. Como b² + a² representa a área do quadrado maior somada às áreas dos triângulos retângulos, e c² representa a mesma área, então b² + a² = c², de acordo com o texto.
III. Por definição, a hipotenusa é o lado oposto ao ângulo agudo, e os catetos são os dois lados que o formam, de acordo com o texto.
Marque a alternativa CORRETA:
I. Segundo o texto, o 4º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas é verificar que a área da região que resta, ao retirar-se os quatro triângulos retângulos, é igual a b² – a².
II. Como b² + a² representa a área do quadrado maior somada às áreas dos triângulos retângulos, e c² representa a mesma área, então b² + a² = c², de acordo com o texto.
III. Por definição, a hipotenusa é o lado oposto ao ângulo agudo, e os catetos são os dois lados que o formam, de acordo com o texto.
Marque a alternativa CORRETA:
Concurso:
Prefeitura de Delmiro Gouveia - AL
Disciplina:
Matemática
mostrar texto associado
Leia o texto 'Teorema de Pitágoras' e, em seguida, analise as afirmativas abaixo:
I. Segundo o texto, o teorema de Pitágoras também pode ser enunciado como uma relação entre áreas, pois, em qualquer triângulo retângulo, a área do quadrado cujo lado é a hipotenusa é igual à soma das áreas dos quadrados cujos lados são os catetos, de acordo com o texto.
II. É verdadeira a equação: c² = b² + a², onde “a” representa o comprimento da hipotenusa, e “b” e “c” representam os comprimentos dos outros dois lados do triângulo, de acordo com o texto.
III. O 5º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas, de acordo com as informações do texto, é desenhar o quadrado de lado b + a, colocando-se os quatro triângulos retângulos noutra posição dentro do quadrado: a posição que deixa desocupada uma região que é um quadrado de lado c, de acordo com o texto.
Marque a alternativa CORRETA:
I. Segundo o texto, o teorema de Pitágoras também pode ser enunciado como uma relação entre áreas, pois, em qualquer triângulo retângulo, a área do quadrado cujo lado é a hipotenusa é igual à soma das áreas dos quadrados cujos lados são os catetos, de acordo com o texto.
II. É verdadeira a equação: c² = b² + a², onde “a” representa o comprimento da hipotenusa, e “b” e “c” representam os comprimentos dos outros dois lados do triângulo, de acordo com o texto.
III. O 5º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas, de acordo com as informações do texto, é desenhar o quadrado de lado b + a, colocando-se os quatro triângulos retângulos noutra posição dentro do quadrado: a posição que deixa desocupada uma região que é um quadrado de lado c, de acordo com o texto.
Marque a alternativa CORRETA: