Filtrar


Questões por página:
Uma indústria produz lâmpadas do tipo I e II. Considere as seguintes variáveis aleatórias: X = tempo de vida das lâmpadas do tipo I em horas e Y = tempo de vida das lâmpadas do tipo II em horas. De um lote de 500 lâmpadas sendo 200 do tipo I e 300 do tipo II retira-se ao acaso uma lâmpada. Sabe-se que X tem distribuição exponencial com média de 5000 horas e que Y tem distribuição exponencial com média de 8000 horas. Nessas condições, a probabilidade da lâmpada selecionada ter duração entre 4000 e 6000 horas é
Dados: e−0,5 = 0,61 e−0,75 = 0,47 e−0,8 = 0,45 e−1 = 0,37 e−1,2 = 0,30
A variável aleatória contínua X tem distribuição uniforme no intervalo [k, b − k]. Sabe-se que a média de X é 10 e que P(X > 16) = 0,125. Nessas condições, a variância de X é igual a
mostrar texto associado
Uma tarefa é realizada pelos funcionários de uma empresa em 3 etapas. O tempo total, de cada funcionário, para a realização da ta- refa é dado pela soma dos tempos de 3 variáveis aleatórias denotadas por Xi, i = 1,2,3, cada uma delas representando o tempo de uma etapa. Sabe-se que o vetor tem distribuição normal multivariada com vetor de médias, dado por matriz de covariâncias dada por Os dados do vetor μ estão em dias e os da matriz Σ em (dias)². Quatro funcionários são selecionados ao acaso e com reposição dentre todos os funcionários da empresa. Nessas condições, a probabilidade do tempo médio, para a realização da tarefa, desses 4 funcionários ser de pelo menos 15 dias é igual a
mostrar texto associado
Atenção: O enunciado abaixo refere-se à questão.
A porcentagem do orçamento gasto com educação nos municípios de certo estado é uma variável aleatória X com distribuição normal com média μ(%) e variância 4(%)2.
Um gasto em educação superior a 10% tem probabilidade de 4%. Nessas condições, o valor de μ é igual a
mostrar texto associado
Atenção: O enunciado abaixo refere-se à questão.
A porcentagem do orçamento gasto com educação nos municípios de certo estado é uma variável aleatória X com distribuição normal com média μ(%) e variância 4(%)2.
Uma amostra aleatória, com reposição, de tamanho n, X₁, X₂, ..., Xn, é selecionada da distribuição de X. Sendo a média, amostral dessa amostra, o valor de n para que não se distancie de sua média por mais do que 0,41% com probabilidade de 96% é igual a