Questões de Concurso
Filtrar
3.606 Questões de concurso encontradas
Página 158 de 722
Questões por página:
Questões por página:
Concurso:
TRT - 2ª Região (SP)
Disciplina:
Estatística
Em virtude de não se conhecer a função de densidade de uma variável aleatória X, com média 22, obteve-se um intervalo de confiança (20,24), sabendo-se que existe a probabilidade mínima de 84% de X pertencer a este intervalo conforme o Teorema de Tchebichev. Considerando este mesmo teorema, obtém-se que a probabilidade de X não pertencer ao intervalo (22 − K,22 + K) é no máximo 6,25%. A amplitude deste último intervalo é de
Concurso:
TRT - 2ª Região (SP)
Disciplina:
Estatística
A função densidade de probabilidade de uma variável aleatória contínua X é dada por

Sendo K > 2, então a variância de X é igual a
Concurso:
TRT - 2ª Região (SP)
Disciplina:
Estatística
Nos registros dos últimos anos, verifica-se que o número médio de pessoas atendidas em uma repartição pública por dia é igual a 20. Deseja-se testar a hipótese de que o número médio de pessoas atendidas por dia (μ) em outra repartição independente da primeira é o mesmo que o verificado na primeira repartição utilizando o teste t de Student. Foram formuladas então as seguintes hipóteses: H0: μ = 20 (hipótese nula) e H1: μ ≠ 20 (hipótese alternativa). Com base em 16 dias escolhidos aleatoriamente na segunda repartição obteve-se uma média igual a 22 pessoas atendidas por dia com um desvio padrão igual a 5. Se, tanto para a primeira repartição como para a segunda, a distribuição da população formada pelo número de pessoas atendidas é normalmente distribuída e de tamanho infinito, obtém-se que o valor da estatística t calculado para comparação com o t tabelado da distribuição t de Student com os respectivos graus de liberdade apresenta valor de
Concurso:
TRT - 2ª Região (SP)
Disciplina:
Estatística
Acredita-se que a variância (σ2) de uma população, normalmente distribuída e de tamanho infinito, seja igual a 3,6. Para verificar se esta variância é inferior a 3,6, a um nível de significância α, foram formuladas as hipóteses H0: σ2 = 3,6 (hipótese nula) e H1: σ2 < 3,6 (hipótese alternativa) utilizando o teste qui-quadrado. Uma amostra aleatória de tamanho 10 foi extraída da população obtendo-se uma variância amostral igual a 1,5.
Dados:
Valores críticos qui-quadrado

A conclusão é que ao nível de significância de
Concurso:
TRT - 2ª Região (SP)
Disciplina:
Estatística
Em uma grande região de um país, uma empresa (E1) foi contratada para elaborar uma pesquisa referente a um atributo X, correspondente a uma população considerada normal, de tamanho infinito, média μ desconhecida e variância populacional igual a 144. Considerando uma amostra aleatória de tamanho 64, esta empresa apurou um intervalo de confiança com um nível de confiança (1 − α) para μ igual a [99,0; 105,0]. Uma outra empresa (E2) trabalhando independentemente da primeira, na mesma região, também elaborou uma pesquisa referente ao atributo X utilizando uma amostra de tamanho 400 e encontrando uma média amostral igual a 104,5. O intervalo de confiança para μ com um nível de confiança (1 − α) encontrado por E2 foi de