Filtrar


Questões por página:

Suponha as variáveis aleatórias independentes X com distribuição Qui-quadrado com v = 5 graus de liberdade e Y com distribuição Gama com parâmetros αImagem associada para resolução da questãoImagem associada para resolução da questãoImagem associada para resolução da questão = 2 e β = 5. Então, a esperança e a variância da variável aleatória W = X + Y são, respectivamente,

Considere o vetor aleatório X'= [X1 X2] cuja matriz de covariância é Σ = Imagem associada para resolução da questão. Então, é correto afirmar que a matriz de correlação P do vetor é


ALERT: Essa questão ainda está sendo revisada pela equipe FonteConcursos!

Considere os resultados do ajuste do modelo Yi = β1X1i + β2X2i + ɛi i = 1,2, ..., n aos valores da variável dependente (resposta) Y e variáveis explicativas X1 e X2 nas tabelas a seguir. A variável ɛi é o erro aleatório e βi i = 1, 2 são os parâmetros.

Imagem associada para resolução da questão

Análise da Variância

Imagem associada para resolução da questão

Então, a estatística t e a razão F foram obtidas usando-se os procedimentos:


Em determinada Vara Federal foram condenados 80 indivíduos processados por peculato e 20 outros indivíduos condenados por corrupção ativa. Um juiz resolve entrevistar dois (02) condenados dessa Vara Federal e escolhe, aleatoriamente, sem reposição da lista de processos, dois (02) condenados. Então, a probabilidade do evento T = {o 2º escolhido da amostra ser um condenado por corrupção ativa} é