60 Questões de concurso encontradas
Página 6 de 12
Questões por página:
O peso de pacotes de café é uma variável aleatória X : N (µ, σ2). Uma máquina de encher pacotes de café está regulada para fazê-lo com µ = 500 g e σ2 = 100 g2 .
Com o objetivo de manter sob controle a variabilidade do produto, a cada 30 minutos uma amostra aleatória de alguns pacotes é selecionada e testa-se se a variabilidade está controlada. Assim, desejando-se testar H0 : σ2 = 100 contra σ2 ≠ 100 toma-se uma amostra de n = 16 pacotes de café e observa-se para a variância amostral o valor 160 g2. O valor observado da estatística apropriada ao teste é
Uma variável aleatória X tem distribuição normal com média μ e desvio padrão σ desconhecido. Desejando-se testar H0 : μ = 2 contra H1 : μ > 2 tomou-se uma amostra aleatória de 4 observações que forneceu os valores: 4, 2, 2 e 2.
A um nível de significância de 10%, no teste mais poderoso, a hipótese H0 será rejeitada se a estatística média amostral X , apropriada ao teste, for maior ou igual a
contra H1 : μ > 2 tomou-se uma amostra aleatória de 4 observações que forneceu os valores: 4, 2, 2 e 2.
A um nível de significância de 10%, no teste mais poderoso, a hipótese H0 será rejeitada se a estatística média amostral X ,
apropriada ao teste, for maior ou igual a
A experiência com trabalhadores de uma certa indústria indica que o tempo requerido para que um trabalhador, aleatoriamente selecionado, realize um serviço, é distribuído de maneira aproximadamente normal com desvio padrão de 12 minutos. Deseja-se, por meio de uma amostra aleatória, com reposição, estimar a média populacional. O tamanho desta amostra, para que a diferença em valor absoluto entre o verdadeiro valor populacional e sua estimativa seja de no máximo 2 minutos, com probabilidade de 96%, é
Suponha que sejam realizados 10 ensaios independentes, cada um com dois resultados possíveis: sucesso e fracasso. Suponha que a probabilidade de sucesso em cada ensaio seja p. Desejando-se testar H0 : p = 0,4 contra H1 : p = 0,5, adotou-se {8, 9,10} como região crítica. A probabilidade de se cometer erro do tipo dois é