Filtrar


Questões por página:
Dois grupos independentes (G1 e G2) são formados por trabalhadores de uma cidade. G1 é composto por uma amostra aleatória, com reposição, de 100 empregados da empresa E1 e G2 por uma amostra aleatória, com reposição, de 60 empregados de uma outra empresa E2. Deseja-se testar a hipótese, utilizando a distribuição qui-quadrado, se as medianas dos salários dos empregados de G1 e G2 são iguais ao nível de significância de 5%. Foram formuladas então as hipóteses H0: As medianas de G1 e G2 são iguais (hipótese nula) e H1: As medianas de G1 e G2 são diferentes (hipótese alternativa).
A tabela abaixo apresenta o resultado de um levantamento realizado com relação à mediana (Md) dos salários do grupo combinado (das duas amostras juntas).


Dados: Valores críticos (c) da tabela da distribuição qui-quadrado com n graus de liberdade para α = 0,05, tal que a probabilidade P(qui-quadrado > c) = 0,05.


A conclusão do teste é que H0
Em uma fábrica de determinado componente eletrônico, acredita-se que a probabilidade de um componente sair com defeito é igual a 10%. Decide-se por meio de uma amostra aleatória, com reposição, de 4 componentes fabricados, testar se o processo de fabricação deste componente está funcionando corretamente, estabelecendo a regra que se mais que 1 componente da amostra apresentar defeito o processo não está funcionando. Para isso, foram formuladas as hipóteses H0: p = 0,1 (hipótese nula) e H1: p > 0,1 (hipótese alternativa), sendo p a probabilidade de um componente sair com defeito. Se na verdade a probabilidade de 1 componente sair com defeito for igual a 20%, obtém-se que a potência deste teste é, em%, igual a
Uma variável aleatória X tem distribuição normal, variância desconhecida e com uma população de tamanho infinito. Deseja-se construir um intervalo de confiança de 95% para a média μ da população com base em uma amostra aleatória de tamanho 9 extraída dessa população e considerando a distribuição t de Student. Nessa amostra, observou-se que a média apresentou um valor igual a 5 e a soma dos quadrados dos 9 elementos da amostra foi igual a 243.
Dados: Valores críticos (tα) da distribuição de Student com n graus de liberdade, tal que a probabilidade P(t > tα) = α.


O intervalo de confiança encontrado foi igual a
Um intervalo de confiança com um nível de (1 − α) foi construído para a média μ1 de uma população P1, normalmente distribuída, de tamanho infinito e variância populacional igual a 144. Por meio de uma amostra aleatória de tamanho 36 obteve-se esse intervalo igual a [25,3; 34,7]. Seja uma outra população P2, também normalmente distribuída, de tamanho infinito e independente da primeira. Sabe-se que a variância de P2 é conhecida e que por meio de uma amostra aleatória de tamanho 64 de P2 obteve-se um intervalo de confiança com um nível de (1 − α) para a média μ2 de P2 igual a [91,54; 108,46]. O desvio padrão de P2 é igual a

Uma variável aleatória X tem a seguinte função de densidade:




Deseja-se obter, utilizando o método da máxima verossimilhança, a estimativa do parâmetro K, sabendo-se que da população correspondente de X foi extraída uma amostra aleatória, com reposição de 4 observações independentes, ou seja: (0,50; 0,70; 0,80; 0,72).
Obs.: Se ln(a) é o logaritmo neperiano de a então: ln(0,50) = −0,69, ln(0,70) = −0,36, ln(0,80) = −0,22 e ln(0,72) = −0,33.
A estimativa encontrada para K, com base na amostra, foi de