Filtrar


Questões por página:

Um econometrista resolve propor e estimar um modelo de regressão linear simples como forma de estimar o efeito da temperatura sobre o volume de venda de sorvetes. Emprega, para esse fim, a formulação:

Onde QS é a quantidade de sorvetes (em milhares), T é a temperatura (célsius) e é ε o termo de erro do modelo.

Apenas estatísticas descritivas básicas sobre QS e T são dadas, como Onde, variâncias (σ2), médias (μ) e covariância (σT, Q, S).

Supondo-se válidos todos os pressupostos clássicos, a partir das informações disponíveis, verifica-se que:

Os principais métodos para a estimação de parâmetros em modelos de regressão linear são os de Mínimos Quadrados Ordinários (MQO), o do Melhor Estimador Linear Não Tendencioso (BLUE) e o de Máxima Verossimilhança (MV).

Sobre esses métodos, é correto afirmar que:

Os testes clássicos de inferência estão baseados na obtenção ou não de evidência estatística contrária à hipótese suposta, previamente, verdadeira. A construção está associada a uma série de conceitos e definições. Entre esses elementos estão:

Um teste de hipótese será feito com base numa distribuição normal, com média desconhecida e variância σ2 =64 Uma amostra de tamanho n = 16 é extraída e sua média calculada, sendo X = 7 O conjunto de hipóteses a ser testado é:

Considere ainda que a região crítica do teste é RC = (9, + ∞) que, caso Ho seja falsa, o μ verdadeiro seria igual a 8.Além disso, são fornecidos os seguintes dados sobre a função distribuição acumulada da normal-padrão.

Φ(0,5) ≅ 0,69 Φ(1) ≅ 0,84 Φ(1,5) ≅ 0,93 Φ(2) ≅ 0,98

Logo, as probabilidades dos erros do Tipo I, do Tipo II e do p-valor (bilateral) do teste são, respectivamente, iguais a:

Com o objetivo de estimar, por intervalo, a verdadeira média populacional de uma distribuição, é extraída uma amostra aleatória de tamanho n = 26. Sendo a variância desconhecida, calcula-se o valor de além da média amostral X = 8 de grau de confiança pretendido é de 95%. Somam-se a todas essas informações os valores tabulados:

Φ(1,65) ≅ 0,95 Φ(1,96) ≅ 0,975 T25(1,71) ≅ 0,95

T26(1,70) ≅ 0,95 T25(2,06) ≅ 0,975 T26(2,05) ≅ 0,975

Onde, = estimador não-viesado da variância populacional;

Φ(z) = fç distribuição acumulada da Normal-padrão;

Tn(t)= fç distribuição acumulada da T-Student com n graus de liberdade.

Então os limites do intervalo de confiança desejado são: