Filtrar


Questões por página:
Nos registros dos últimos anos, verifica-se que o número médio de pessoas atendidas em uma repartição pública por dia é igual a 20. Deseja-se testar a hipótese de que o número médio de pessoas atendidas por dia (μ) em outra repartição independente da primeira é o mesmo que o verificado na primeira repartição utilizando o teste t de Student. Foram formuladas então as seguintes hipóteses: H0: μ = 20 (hipótese nula) e H1: μ ≠ 20 (hipótese alternativa). Com base em 16 dias escolhidos aleatoriamente na segunda repartição obteve-se uma média igual a 22 pessoas atendidas por dia com um desvio padrão igual a 5. Se, tanto para a primeira repartição como para a segunda, a distribuição da população formada pelo número de pessoas atendidas é normalmente distribuída e de tamanho infinito, obtém-se que o valor da estatística t calculado para comparação com o t tabelado da distribuição t de Student com os respectivos graus de liberdade apresenta valor de
Em uma grande região de um país, uma empresa (E1) foi contratada para elaborar uma pesquisa referente a um atributo X, correspondente a uma população considerada normal, de tamanho infinito, média μ desconhecida e variância populacional igual a 144. Considerando uma amostra aleatória de tamanho 64, esta empresa apurou um intervalo de confiança com um nível de confiança (1 − α) para μ igual a [99,0; 105,0]. Uma outra empresa (E2) trabalhando independentemente da primeira, na mesma região, também elaborou uma pesquisa referente ao atributo X utilizando uma amostra de tamanho 400 e encontrando uma média amostral igual a 104,5. O intervalo de confiança para μ com um nível de confiança (1 − α) encontrado por E2 foi de
Seja uma população {x1, x2, x3, ..., x20} formada pela renda em unidades monetárias de 20 pessoas, sendo xi > 0 a renda da i-ésima pessoa (1 ≤ i ≤ 20). O coeficiente de variação desta população é igual a 20%. Sabendo-se que (x2 − x10) = 2 com x10 > 4, subtrai-se de x10 um montante igual a 4 e acrescenta-o a x2. Após esta transferência, a nova variância fica igual a
Dado:

Considerando na tabela abaixo a distribuição de frequências absolutas, referente aos salários dos n empregados de uma empresa, em R$ 1.000,00, observa-se que além do total dos empregados (n) não é fornecida também a frequência correspondente ao intervalo da 4ª classe (f4).


O valor da média aritmética destes salários, obtido considerando que todos os valores incluídos num certo intervalo de classe são coincidentes com o ponto médio deste intervalo, é igual a R$ 6.200,00.


O valor da mediana em R$, obtido pelo método da interpolação linear, é igual a

Uma série de tempo consiste no consumo mensal, em unidades, de um produto no ano de 2017. Pelo método da regressão linear, usando os estimadores de mínimos quadrados, obteve-se a equação da tendência estimada em que t é o tempo (mês). Essa equação foi encontrada com base nas observações do consumo dos 12 meses de 2017, ou seja, janeiro é representado por t = 1, fevereiro por t = 2 e assim por diante até dezembro por t = 12.


A média mensal do consumo, em unidades, desse produto, no ano de 2017, foi então igual a