Filtrar


Questões por página:
Em um modelo de regressão linear simples, foi observado que y = 2+ 2x + ∈, em que y representa a variável dependente, cujo desvio padrão amostral é igual a 6, e x denota a variável regressora, cuja média e desvio padrão amostrais são, respectivamente, iguais a 5 e 2,4. O termo ∈ representa o erro aleatório com média zero e variância 4.
A partir das informações apresentadas na situação hipotética precedente, considerando que esse modelo foi obtido pelo método de mínimos quadrados ordinários, julgue o seguinte item.

A média amostral de y é igual a 10.
Em um modelo de regressão linear simples, foi observado que y = 2+ 2x + ∈, em que y representa a variável dependente, cujo desvio padrão amostral é igual a 6, e x denota a variável regressora, cuja média e desvio padrão amostrais são, respectivamente, iguais a 5 e 2,4. O termo ∈ representa o erro aleatório com média zero e variância 4.
A partir das informações apresentadas na situação hipotética precedente, considerando que esse modelo foi obtido pelo método de mínimos quadrados ordinários, julgue o seguinte item.


A correlação linear de Pearson entre as variáveis x e y é igual a 0,8.
Em um modelo de regressão linear simples, foi observado que y = 2+ 2x + ∈, em que y representa a variável dependente, cujo desvio padrão amostral é igual a 6, e x denota a variável regressora, cuja média e desvio padrão amostrais são, respectivamente, iguais a 5 e 2,4. O termo ∈ representa o erro aleatório com média zero e variância 4.
A partir das informações apresentadas na situação hipotética precedente, considerando que esse modelo foi obtido pelo método de mínimos quadrados ordinários, julgue o seguinte item.


Considerando que os coeficientes do modelo são estimativas obtidas pelo método de mínimos quadrados ordinários, a variância de y é igual a 4.
O setor de Recursos Humanos de um banco está utilizando People Analytics para identificar padrões no desempenho dos funcionários e melhorar a alocação de talentos. Durante uma análise recente, a equipe utilizou dados de avaliações de desempenho (pontuações de 0 a 100) e correlacionou esses dados à quantidade de horas dedicadas a treinamentos no último semestre. J, membro da equipe, construiu um modelo de regressão linear para prever a pontuação de um funcionário na avaliação de desempenho (Y), em função do número de horas dedicadas a treinamentos no último semestre (X), obtendo o modelo a seguir.

Ŷ = 50 + 0,5 X
Ele verificou que o modelo atende a todas as premissas do modelo de regressão linear.
A pontuação esperada de um funcionário que dedicou 60 horas a treinamento no último semestre é
Considere uma regressão linear simples da forma yi = bo + b1xi +ei, onde bo e b1, são parâmetros a serem estimados e ei о termo aleatório, com média 0 e desvio-padrão o2. Sabe-se que a média dos valores de xi = 10 e a média dos valores de yi = 50. Utilizando o método dos mínimos quadrados, o valor estimado de b1, foi 4, então o valor estimado do intercepto (bo) é dado por