Questões de Concurso
Filtrar
3.537 Questões de concurso encontradas
Página 19 de 708
Questões por página:
Em uma amostra aleatória com n = 25, observações da variável aleatória X que representam uma característica quantitativa foram obtidas por um estatístico que precisa estimar a média μ e o desvio-padrão σ da população (distribuição) de onde a amostra foi tomada por intervalo de nível 95% deconfiança. A análise dos dados forneceu os seguintes resultados: média amostral x̄ = 21,980 e desvio-padrão amostral s = 2,11877. O teste de Shapiro-Wilk, para verificar a Normalidade dos dados, resultou em W = 0,972867 e valor-p p = 0,721053; o escore t24,0,975 = 2,0639 e os escores X224;0,975 = 39,3641 e X224;0,025 = 12,4012.
Então, é correto afirmar que os intervalos de confiança para a média μ e o desvio-padrão σ são, respectivamente,
Se a variável aleatória X tem distribuição normal com média μ e variância σ2, ou seja, X ⁓ N(μ, σ2), s2 =
(xi–x̄)2/n–1 (variância amostral) é a estimativa de σ2 com base em uma amostra com n observações, [x1, x2, ..., xn]. Assim, a variável T = X – μ/s tem distribuição t de Student com n – 1 graus de liberdade, ou seja, T ~ tn-1. Nesse caso, sabendo que P(T ≤ 2) = 0,968027 e P(T ≥ -2) = 0,031973, é correto afirmar que
Um estatístico conduziu um experimento para verificar se existem diferenças estatisticamente significativas entre os resultados quantitativos de três procedimentos aplicados em amostras independentes. Os resultados obtidos com o experimento são:
Tabela da Análise da Variância – ANOVA
Teste de Levene para hipótese de variâncias iguais
Teste de Normalidade para os resíduos da ANOVA
Teste de Kruskal-Wallis para hipótese de medianas iguais
Estatística do Teste = 24,8078 Valor-p p = 0,0000041025
Então, é correto afirmar, em relação ao nível de significância de 5%, que
A Razão das Chances é definida pela razão entre a probabilidade de sucesso e a probabilidade de insucesso, ou seja, p/1–p. Então, assumindo y = β0 + β1X1 + ... + βp-1Xp-1 = X' β , tem-se no Modelo Logístico p = p(X) = p(X1, X2, ..., Xp-1) = ey/ey+1 = 1/1+e-y= 1/1+e-x'β. Portanto, a Razão das Chances no Modelo Logístico é